### 付 平成 20 年度高等学校数学標準学力検査の結果とその考察

### 1 検査の趣旨

当センターでは昭和51年から毎年,高等学校数学標準学力検査を実施してきた。今回も次の2つの ねらいの下に学力検査を実施し、検査結果を分析・考察して、指導上の留意点を明らかにした。なお、 過去の検査結果については、当該年度の当センター研究紀要別冊に掲載している。

- (1) 入学者数学学力調査により把握した新入生の学力実態が、その後の高等学校での学習指導を通 してどのように変容しているかを調べる。
  - (2) 基本事項についての理解と定着の程度を調査し、高等学校での指導に役立てる。

### 2 検査の実施及び処理

## (1) 検査問題の種類と問題の構成

検査問題は、数学 I 基本、数学 I + A、数学 II の3種類である。どの検査問題も学習指導要領に示 された内容を出題の基準とした。検査時間はいずれも50分である。

数学 I 基本: 基本的な計算力,基礎事項の定着度を調べる問題を中心に構成した。

数学I+A: 数学I基本より高度の思考力・洞察力を要する数学Iの問題に加え、数学Aの内容

も併せて構成した。

: 問題[1]は基本問題,問題[2],[3],[4]は標準問題である。

### (2) 調査の対象と方法

各科目の授業が終了した学年を対象に、学校ごとに2月1日から3月31日の間に適宜実施した。集 計のための標本は各学校とも課程別,類型別に各々2学級分とし,集計用紙(2学級分の得点度数分 布と、その10%の抽出者の解答をそのまま転記したもの)を4月22日までに回収した。

### 3 検査結果の概要

#### (1) 標本数・平均点・標準偏差 表 14

| テスト<br>項目 | 数学<br>I 基本 | 数学<br>I +A | 数学Ⅱ   |
|-----------|------------|------------|-------|
| 標本数       | 1,020      | 6, 548     | 7,629 |
| 平均点       | 41.7       | 42.0       | 49. 1 |
| 標準偏差      | 24. 3      | 26. 7      | 28. 1 |

表 15

9.9

9.1

# (2) 得点分布(%)

 $10 \sim 19$ 

 $0 \sim 9$ 

| テスト<br>得点    | 数学<br>I 基本 | 数学<br>I + A | 数学Ⅱ  |
|--------------|------------|-------------|------|
| 90 ~100      | 2. 9       | 4. 3        | 9.6  |
| $80 \sim 89$ | 6. 1       | 6.5         | 9. 1 |
| $70 \sim 79$ | 6. 7       | 8.3         | 10.0 |
| $60 \sim 69$ | 9.4        | 9. 7        | 9. 9 |
| $50 \sim 59$ | 10.9       | 10.5        | 10.3 |
| 40 ~ 49      | 12. 9      | 11.4        | 10.6 |
| 30 ~ 39      | 13. 5      | 11.4        | 10.9 |
| 00 - 00      | 1.0 0      | 11 0        | 10 0 |

13. 1

13. 2

14.7

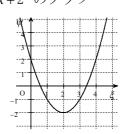
6.9

# (3) 学校別(課程別)平均点分布(校)表 16

| テスト<br>平均点   | 数学<br>I基本 | 数学<br>I + A | 数学Ⅱ |
|--------------|-----------|-------------|-----|
| 80以上         | 0         | 1           | 7   |
| 75~80未満      | 0         | 4           | 5   |
| $70 \sim 75$ | 1         | 2           | 11  |
| $65 \sim 70$ | 2         | 4           | 7   |
| $60 \sim 65$ | 0         | 5           | 7   |
| $55 \sim 60$ | 0         | 9           | 8   |
| $50 \sim 55$ | 1         | 6           | 11  |
| $45 \sim 50$ | 3         | 5           | 8   |
| $40 \sim 45$ | 4         | 4           | 12  |
| $35 \sim 40$ | 3         | 10          | 12  |
| $30 \sim 35$ | 2         | 9           | 6   |
| $25 \sim 30$ | 3         | 6           | 7   |
| $20 \sim 25$ | 2         | 9           | 12  |
| $15 \sim 20$ | 0         | 11          | 5   |
| 15未満         | 0         | 6           | 4   |
| 計            | 21        | 91          | 122 |

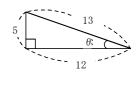
# 4 数学 I (基本) の結果とその考察

次のの中にあてはまる数または式を解答欄に記入せよ。


# [1]次の各問いに答えよ。

- (2)  $(2x+1)(4x^2-2x+1)$ を展開すると である。

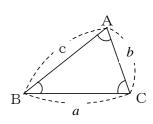
- (5)  $(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})=$  ア である。また  $\frac{1}{\sqrt{5}+\sqrt{2}}$  の分母を有理化すると  $\boxed{1}$  である。
- (6) 1次不等式  $3x-1 \le 5x-7$  を満たすxの値の範囲は である。
- (7) 2次方程式  $x^2 + 3x + 1 = 0$  を解くと x = である。
- (8) 2次不等式  $x^2 3x + 2 > 0$  を満たすxの値の範囲は である。


## [2] 次の各問いに答えよ。

- (1) 2次関数  $y=x^2-4x+7$  を  $y=(x-p)^2+q$  の形に変形すると  $y=(x-p)^2+p$  となる。
- (2) 2次関数  $y = x^2$  のグラフを, 頂点が (3, 4) となるように平行移動したグラフを 表す 2 次関数は  $y = x^2$  である。
- (3) 右図は 2 次関数  $y = x^2 4x + 2$  のグラフ である。この関数の  $1 \le x \le 4$  における最大値は 。 最小値は である。



# [3]次の各問いに答えよ。


(1) 右図の直角三角形において,



- (3)  $0^{\circ} \le A \le 90^{\circ}$  で、 $\sin A = \frac{1}{2}$  のとき、 $A = \bigcirc$  度である。
- (4)  $90^{\circ} \le A \le 180^{\circ}$  で、 $\sin A = \frac{3}{5}$  のとき、 $\cos A = \square$  である。

# [4]次の各問いに答えよ。

- (1) 2つの相似な立体において、相似比が 1:3 のとき、2つの立体の体積比は : である。
- - A  $60^{\circ}$  A  $45^{\circ}$  C
- (3) 右図の△ABCにおいて辺BCの長さは である。



余弦定理  $a^2 = b^2 + c^2 - 2bc \cos A$ 正弦定理  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 

| 番号     | 配点 | 正答                                                          | 正答率 | 無答率 | 誤答率 | 主な誤答例(標本全体に対する%)                                                                                     |
|--------|----|-------------------------------------------------------------|-----|-----|-----|------------------------------------------------------------------------------------------------------|
| [1](1) | 5  | $a^{1\ 2}$                                                  | 54  | 6   | 40  | $a^{81}$ (7.9), $a^{32}$ (3.6), $a^{6}$ (3.6)                                                        |
| (2)    | 5  | $8x^3 + 1$                                                  | 69  | 10  | 21  | $12x^2 - 4x + 1 (3.0), 4x^2 + 2 (1.8), 8x^2 + 1 (1.8)$                                               |
| (3)    | 5  | (2x+1)(x-3)                                                 | 53  | 20  | 27  | $(x-1)(2x-3)(5.5), 3, -\frac{1}{2}(1.8), (x+1)(2x-5)(1.8)$                                           |
| (4)    | 5  | $-2\sqrt{3}$                                                | 79  | 6   | 15  | $2\sqrt{3}$ (3.0), $-3\sqrt{2}$ (1.2)                                                                |
| (5)    | 5  | $\boxed{7} \ 3$ $\boxed{4} \ \frac{\sqrt{5} - \sqrt{2}}{3}$ | 46  | 8   | 46  |                                                                                                      |
| (6)    | 5  | $x \ge 3$                                                   | 47  | 24  | 29  | $3 (7.9), x \leq 3 (6.0), 4 (2.4)$                                                                   |
| (7)    | 5  | $\frac{-3 \pm \sqrt{5}}{2}$                                 | 35  | 36  | 29  | $-1, -2 (3.6), \frac{3 \pm \sqrt{5}}{2} (2.4), -4 (1.8)$                                             |
| (8)    | 5  | x < 1, 2 < x                                                | 14  | 37  | 49  | 1 < x < 2  (9.1),  2,  1  (5.4),  x > 1  (1.8)                                                       |
| [2](1) | 5  | <b>ア</b> 2, <b>7</b> 3                                      | 36  | 16  | 48  | 7       4 (9.7), 4x (2.4), 7 (1.8)         4       7 (38.2), 4 (3.0), 11 (2.4)                       |
| (2)    | 5  | $y = x^2 - 6x + 13$                                         | 17  | 37  | 46  | $3x^2 + 4$ (4.2), $3x + 4$ (3.0), 9 (3.0)                                                            |
| (2)    | 5  | 2                                                           | 52  | 14  | 34  | 4 (12.1), なし (11.5), -1 (1.8)                                                                        |
| (3)    | 5  | -2                                                          | 60  | 13  | 27  | -1 (11.0), 1 (7.3), 2 (3.0)                                                                          |
| [3](1) | 5  | $\frac{5}{12}$                                              | 64  | 7   | 29  | $\frac{12}{5}$ (11.0), 30° (4.8), $\frac{13}{12}$ (4.8)                                              |
| (2)    | 5  | $-\frac{1}{2}$                                              | 32  | 17  | 51  | $\frac{1}{2}$ (11.5), $\frac{13}{12}$ (4.8), $-\frac{\sqrt{3}}{2}$ (4.8), $\frac{\sqrt{3}}{2}$ (4.2) |
| (3)    | 5  | 30                                                          | 42  | 12  | 46  | 45° (26.1), 60° (13.3), 120 (1.2)                                                                    |
| (4)    | 5  | $-\frac{4}{5}$                                              | 12  | 40  | 48  | $\frac{4}{5}$ (15. 2), $\frac{2}{5}$ (4. 8), 108° (3. 0)                                             |
| [4](1) | 5  | 1:27                                                        | 31  | 10  | 59  | 1:9 (24.2), 1:3 (15.8), 3:9 (5.5)                                                                    |
|        |    | $BC = \sqrt{7}$                                             | 36  | 23  | 41  | 7 (9.7), 3 (3.6), $\sqrt{5}$ (2.4), 4 (2.4)                                                          |
| (2)    | 5  | $\triangle ABC = \frac{3\sqrt{3}}{2}$                       | 24  | 50  | 26  | $\frac{3}{2}$ (3.0), 3 (1.8)                                                                         |
| (3)    | 5  | $\sqrt{3}$                                                  | 34  | 38  | 28  | 2 (4.2), 1 (3.6), $\frac{\sqrt{3}}{2}$ (3.0), 3 (2.4)                                                |

| 年度  | 設問番号         | 設問の概要                                                                                    | 正答率% (上位群%/下位群%) | $\frac{\sqrt{5} + \sqrt{2}}{7}$ の誤答率% |
|-----|--------------|------------------------------------------------------------------------------------------|------------------|---------------------------------------|
| H19 | [1](5)       | $\frac{1}{\sqrt{5}+\sqrt{2}}$ の分母の有理化                                                    | 33 (62/0)        | 16                                    |
| H20 | [1](5)ア<br>イ | $(\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2})$ の計算 $\frac{1}{\sqrt{5} + \sqrt{2}}$ の分母の有理化 | 46 (88/12)       | 11                                    |

6年連続で出題している分母の有理化に関する問題である。H20では、設問の前半にルート計算を加えたところ、アのみの正答率は90%を超えた。そして、イの正答率はH19に比べて13%上昇した。特に下位群は0%から12%へと上昇した。ただ、最頻誤答の出現率は11%であった。

### 【指導上の留意点】

アを解くことにより、 $(a+b)(a-b)=a^2-b^2$  を利用して、分母の有理化を行える生徒が下位群にも一定数存在することが分かった。H19、H20 に指摘をしたように、イのような分母の有理化では  $(a+b)(a-b)=a^2-b^2$  が利用できることを実際に計算させながら生徒に印象づけたい。そして、このような指導を機会あるごとに丁寧に行い、生徒への徹底を図りたい。

一方で、アを正しく計算しながら、 $(a+b)^2 = a^2 + b^2$  として分母の有理化を行った生徒が約 10%存在した。 $(a+b)^2 = a^2 + 2ab + b^2$  の理解の徹底を図ることも、必要な指導である。

### (2) 三角比の値を求めるときは常に動径の位置を確認させたい。

表 18

| 設問の概要       | -     | 正答率%, | /誤答率% | 0     | H20 の主な誤答(出現率%)                                    |  |
|-------------|-------|-------|-------|-------|----------------------------------------------------|--|
| 取回の概要       | H17   | H18   | H19   | H20   | 1 120 の主な映合 (山境学 70)                               |  |
| 鋭角 θ の三角比の値 | 43/14 | 80/ 4 | 70/10 | 64/ 7 | 12/5(11.0), 30° (4.8), 13/12(4.8)                  |  |
| cos120°の値   | 42/15 | 50/10 | 35/19 | 32/17 | $1/2(11.5), 12/13(7.2), -\frac{\sqrt{2}}{2}$ (4.8) |  |
| 三角方程式 (鋭角)  | 52/16 | 59/10 | 52/16 | 42/12 | 45° (26. 1), 60° (13. 3)                           |  |
| 三角比の相互関係    | 30/39 | 22/28 | 13/34 | 12/40 | 4/5(15.2), 2/5(4.8)                                |  |
| 余弦定理        | 36/19 | 45/17 | 35/21 | 30/23 | 7 (9.7), 3 (3.6)                                   |  |
| 正弦定理        | 35/25 | 37/29 | 30/32 | 34/38 | 2 (4.2), 1 (3.6)                                   |  |

中間報告では三角方程式の正答率が3年連続で下がったと指摘した。同様のことが三角比の他の問題でも起こっていた。

cos120°の値の問題についてみると、誤答のうち、正の数を答えた生徒が、53%存在した。これは、三角比の概念を鋭角から鈍角へと拡張させられていないことに起因する。12%出現した誤答「1/2」は、「鈍角の余弦の値は負になる」という鈍角の三角比の概念が形成されていない証拠である。「一」のつけ忘れという「うっかりミス」が含まれると推測できるが、概念形成がしっかりなされれば、「うっかりミス」は減るはずである。また、12/13 とした誤答は直角三角形の三辺の比が記憶できていないことに起因している。

### 【指導上の留意点】

鈍角へ角を拡張した後は、三角比の値を求める時、必ず座標軸をかいて動径を図示し、その図を基に求めるよう指導したい。 2種類の直角三角形(30°:60°:90°,45°:45°:90°)の角の大きさと辺の比について確実にしておくことも重要である。

| 5 | 数学 | I + | A O | 結果 | ح | そ | の考察 |
|---|----|-----|-----|----|---|---|-----|
|---|----|-----|-----|----|---|---|-----|

| 5 数学I+Aの結果とその考察                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 次の の中にあてはまる数または式を解答欄に                                                             | こ記入せよ。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| [1]次の各問いに答えよ。                                                                     | [2]OA=6, OC=14 である長方形OABC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (1) $a = \sqrt{5} + \sqrt{2}$ のとき, $a + \frac{3}{a}$ を計算すると                       | の辺 OC上にOD=2 となるように点Dを                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| a である。                                                                            | とる。いま,点PがAを出発して辺OA上を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (2) $(x+y)^2 - x - y$ を因数分解すると                                                    | 毎秒1の速さでOに向かうと同時に、点Qは                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| である。                                                                              | Dを出発して辺OC上を毎秒2の速さでCに                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (3) 2次方程式 $x(x+3)=5$ の解は $x=$                                                     | 向かう。 $x$ 秒後の $\Delta$ O P Q の面積を $y$ とする。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| である。                                                                              | このとき、次の各問いに答えよ。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (4) 2 次不等式 $x^2 - 3x < 0$ を解くと                                                    | (1) $0 \le x \le 6$ のとき, OP とOQを $x$ の式で表す                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| である。                                                                              | と, O P = ア , O Q = イ であ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (5) 2次方程式 $x^2-5x+a=0$ が実数解をもつ                                                    | る。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| とき,実数 a の値の範囲は である。                                                               | (2) (1) のとき, △OPQの面積 yの最大値は                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                   | である。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (6) 放物線 $y=2x^2$ を $x$ 軸方向に $-2$ , $y$ 軸方向                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| に1だけ平行移動したグラフを表す2次関数                                                              | [3] $\triangle ABC$ ( $E$ ), $E$ ), $E$ 0, $E$ 1, $E$ 3, $E$ 3, $E$ 4, $E$ 5, $E$ 5, $E$ 4, $E$ 5, $E$ 5, $E$ 5, $E$ 6, $E$ 7, $E$ 8, $E$ 9, $E$ 1, $E$ 9, $E$ 1, |
| t, y = $t = 0$                                                                    | ∠A=60°,∠Aの二等分線と辺BCの交点を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (5) 0 - 0 7 5 4 4 10 10 0 1 1 1 1 7 2                                             | Dとするとき、次の各問いに答えよ。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (7) 2 つの不等式 $4x+3>x+2$ , $3x-1 \ge x+7$ を 同時に満たす $x$ の値の範囲は である。                  | (1) 辺BCの長さは である。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13 3 ( - 11, 47 - 7 ) W S   E                                                     | (2) △ABCの外接円の半径は である。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (8) $0^{\circ} \leq \theta \leq 180^{\circ}$ において、 $\cos \theta = \frac{1}{3}$ のと | (3) △ABDの面積は である。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\theta = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C, 5000                                                                           | [4]袋の中に赤球2個と白球3個が入っているとき、次の各問いに答えよ。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (9) 命題 $\lceil x^2 - 2x = 0 $ ならば $x = 2$ 」の真偽は ア                                 | (1) この袋から3個の球を同時に取り出すとき,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| である。また偽のとき,反例はx= イ で                                                              | 赤球2個、白球1個を取り出す確率は                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ある。ただし解答欄のアには真か偽を記入せ                                                              | <ul><li>である。</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| よ。                                                                                | (2) この袋から1個の球を取り出して色を調べ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (10) A, A, B, B, Bを1列に並べるとき,                                                      | また袋に戻す試行を3回繰り返す。このとき赤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 異なる並べ方は 通りである。                                                                    | 球2回,白球1回取り出す確率は であ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                   | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (11) 1から200の自然数うち,3でも7でも割り                                                        | [5]右の図のように、直径がABの円がある。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 切れない数は 個である。                                                                      | 線分ABを2:3に外分する点をCとする。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                   | AB=2のとき, Cから円に引いた接線と                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (12) 底面の直径と高さが等しい                                                                 | 円の接点をTとするとき,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 円柱にちょうど入る球がある。                                                                    | CT= である。 A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 円柱と球の体積比をもっとも                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 簡単な整数比で表すと                                                                        | C $T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| : である。                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| ਜ <b>਼</b> | 配 |                                  |     | .位群      |         | 位群       | 誤      |                                                                                              |
|------------|---|----------------------------------|-----|----------|---------|----------|--------|----------------------------------------------------------------------------------------------|
| 番号         | 点 | 正答                               | 正答下 | 平<br>位群  | 無答<br>下 | 平<br>位群  | 答<br>率 | 主な誤答例(標本全体に対する%)                                                                             |
| [1]        | 5 | $2\sqrt{5}$                      | 58  | 86<br>29 | 4       | 0<br>12  | 38     | $\frac{10 + 2\sqrt{10}}{\sqrt{5} + \sqrt{2}} (3.0), 3(2.9), 2\sqrt{5} + 2\sqrt{2} (2.2)$     |
| (2)        | 5 | (x+y)(x+y-1)                     | 41  | 80<br>7  | 30      | 9<br>49  | 29     | $x^{2}+2xy+y^{2}-x-y (8.0), (x+y)^{2}-(x+y) (1.6)$                                           |
| (3)        | 5 | $x = \frac{-3 \pm \sqrt{29}}{2}$ | 69  | 94<br>40 | 8       | 0<br>13  | 23     | x = 0,-3 (2.2), $x = 5, 2$ (1.4),<br>$x = \frac{3 \pm \sqrt{29}}{2}$ (1.3), $x = 5,-3$ (1.2) |
| (4)        | 5 | 0 < x < 3                        | 61  | 94<br>25 | 10      | 0<br>22  | 29     | x < 3 (9.6), x = 0, 3 (2.4), x < 0, 3 < x (2.3)                                              |
| (5)        | 5 | $a \leq \frac{25}{4}$            | 41  | 81<br>4  | 23      | 1<br>55  | 36     | $a < \frac{25}{4} (9.0), \ a \ge \frac{25}{4} (3.8), \ a > \frac{25}{4} (2.3)$               |
| (6)        | 5 | $y = 2x^2 + 8x + 9$              | 43  | 77<br>4  | 15      | 1<br>42  | 42     | $y=2(x+2)+1$ (2.3), $y=2(x-2)^2+1$ (1.4)<br>$y=2x^2+1$ (1.4), $y=x^2+1$ (1.2)                |
| (7)        | 5 | $x \ge 4$                        | 55  | 88<br>17 | 13      | 0<br>34  | 32     | $x > \frac{1}{3}$ (8.6), $-\frac{1}{3} < x \le 4$ , (7.7)                                    |
| (8)        | 5 | $2\sqrt{2}$                      | 56  | 75<br>27 | 12      | 1<br>29  | 32     | $3(2.4), \sqrt{2}(2.3), \sqrt{3}(1.7), \pm 2\sqrt{2}(1.7)$                                   |
| (9)        | 5 | $^{4}$ 為, $x=0$                  | 65  | 93<br>35 | 3       | 0<br>6   | 32     | 真B (5.2), 真-2 (5.2), 真レ (4.6)                                                                |
| (10)       | 5 | 10                               | 44  | 74<br>14 | 7       | 2<br>14  | 49     | 120 (27.2), 12 (5.5), 25 (2.3), 20 (2.0)                                                     |
| (11)       | 5 | 115                              | 40  | 61<br>20 | 8       | 2<br>15  | 52     | 85 (14.6), 9 (4.7), 191 (3.4), 106 (1.9)                                                     |
| (12)       | 5 | 3:2                              | 29  | 49<br>14 | 14      | 4<br>21  | 57     | 2:1 (11.0), 4:3 (9.8), 3:1 (9.2)                                                             |
| [2]        | 5 | (6-x,2x+2)                       | 40  | 69<br>11 | 17      | 0<br>40  | 43     | (x,2x) (8.9), $(6-x,12-2x)$ (3.6)<br>(6-x,2x) (3.4), $(x,2x+2)$ (3.2)                        |
| (2)        | 5 | $\frac{49}{4}$                   | 11  | 15<br>1  | 22      | 5<br>54  | 67     | 12 (29.0), 42 (9.6), 9 (5.0), 6 (2.8)                                                        |
| [3]        | 5 | 7                                | 60  | 95<br>28 | 15      | 0<br>31  | 25     | $\sqrt{39}$ (2.9), 6 (2.2), $\sqrt{69}$ (1.8)                                                |
| (2)        | 5 | $\frac{7\sqrt{3}}{3}$            | 37  | 77<br>5  | 31      | 4<br>59  | 32     | $3 (2.5), 4 (2.5), \sqrt{3} (2.5), 5 (1.8)$                                                  |
| (3)        | 5 | $\frac{80\sqrt{3}}{13}$          | 18  | 41<br>0  | 41      | 13<br>62 | 41     | $10\sqrt{3}$ (11.4), $5\sqrt{3}$ (2.3), 10 (1.8)                                             |
| [4]        | 5 | $\frac{3}{10}$                   | 47  | 75<br>17 | 8       | 2<br>18  | 45     | $\frac{3}{5}$ (5.8), $\frac{1}{3}$ (5.4), $\frac{2}{5}$ (4.4), $\frac{1}{10}$ (4.1)          |
| (2)        | 5 | $\frac{36}{125}$                 | 14  | 31<br>0  | 24      | 5<br>45  | 62     | $\frac{12}{125}$ (20.0), $\frac{3}{5}$ (1.9), $\frac{12}{25}$ (1.8)                          |
| [5]        | 5 | $2\sqrt{6}$                      | 24  | 44<br>4  | 19      | 5<br>37  | 57     | $\sqrt{15}$ (18. 2), 5 (5. 4), 4 (5. 0), $\sqrt{6}$ (4. 2)                                   |

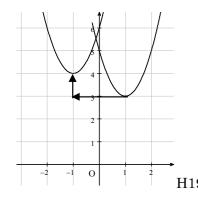
# (1) 2次不等式の問題についてさらに定着を図りたい。

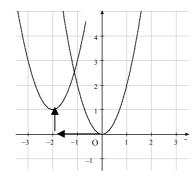
| 年度  | 問題             | 正答率 (上位群/下位群)  | 主な誤答 (標本全体に対する%)                          |
|-----|----------------|----------------|-------------------------------------------|
| H18 | $x^2 - 25 > 0$ | 54% (88% /17%) | $x > 5$ (15.4%) $x > \pm 5$ (5.6%)        |
| H19 | $x^2 - 3x > 0$ | 54% (89% /8%)  | x > 3  (10.9%)  x = 3  (3.6%)             |
| H20 | $x^2 - 3x < 0$ | 61% (94% /25%) | $x < 3  (9.6\%)  x < 0, \ 3 < x  (2.3\%)$ |

[1](4) で 2 次不等式を出題した。表のようにH18, H19 に比べて正答率が上がったのは不等号の向きによるものと思われるが,H19 に引き続き,両辺をxで割ってしまうという解答が 10%程度あった。

### 【指導上の留意点】

数字で割るときと同じように、安易に文字で割ってしまう生徒が多い。文字の場合、その値が0になる可能性があるので、安易に割ってはいけないということを強調しておきたい。このことは今後の方程式、不等式においても重要な事項であるため、継続して指導していく必要がある。


そして、2次不等式の指導においては因数分解や解の公式を用いて、x軸との共有点を求めた後、グラフを利用して解くということを徹底させたい。特に下位層においては、視覚的に捉えやすいように1次不等式の段階からグラフを利用して解くことを強調していきたい。


# (2) 2次関数の平行移動の問題についての下位層の定着を図りたい。

|     | 問題                                             | 正答率(上位群/下位群)      | 主な誤答(全体に対する%)               |
|-----|------------------------------------------------|-------------------|-----------------------------|
| H19 | 放物線 $y = 2(x-1)^2 + 3$ を $x$ 軸方向に $-2$ , $y$ 軸 | 100/ (=00/ /00/)  | y = 2(x+1) + 2 (6.2%)       |
|     | 方向に1だけ平行移動したグラフを表す2次関                          | 49% (78% / 9%)    | $y = 2(x-3)^2 + 4$ (4.2%)   |
|     | 数を求めよ。                                         |                   | $y = 2(x+1)^2 + 2  (1.2\%)$ |
| H20 | 放物線 $y = 2x^2$ を $x$ 軸方向に $-2$ , $y$ 軸方向に 1    | 400/ (550/ / 40/) | $y = 2(x+2)^2 + 1$ (2.3%)   |
|     | だけ平行移動したグラフを表す2次関数を求め                          | 43% (77% / 4%)    | $y = 2(x-2)^2 + 1$ (1.4%)   |
|     | よ。                                             |                   | $y = 2x^2 + 1$ (1.4%)       |

H19 では放物線の頂点が(1,3)であり、H20 は頂点が原点であるため、難易度としては下がっているにもかかわらず正答率は上がらなかった。この問題における誤答として多いのが、2乗の付け忘れや、 $y=a(x+p)^2+q$ との覚え間違いであり、2次関数の標準形が曖昧になっていることが分かる。【指導上の留意点】

2次関数の平行移動の問題については、標準形から頂点や軸を求めるといった基本的な作業を徹底させたい。そして、グラフの頂点を具体的に移動させ、平行移動後のグラフの頂点を標準形の式、 $y = a(x-p)^2 + q$ のpとqに代入するという流れを定着させたい。特に対称移動と平行移動が関係した問題では、頂点の移動の様子を図示するなど視覚的に捉えさせ代入するように指導したい。





H20

また上位の生徒には,

$$y = f(x)$$
  $\rightarrow$   $y-q = f(x-p)$   $x$  軸方向に  $p$  平行移動  $y$  軸方向に  $q$  平行移動

となることを説明するのも効果的である。

## (3) 分点の考え方をしっかり理解させ、図示ができるよう指導したい。

| 年 度  | H17          | H18               | H19                             | H20                 |
|------|--------------|-------------------|---------------------------------|---------------------|
|      | BC=5, CD=3のと | PA = 3, PC = 2, P | PA = 3, AB = 2, P               | 直径ABを2:3に外分         |
|      | きDAの長さを求め    | D=8のとき, PBを求      | C=2のとき, CDを求                    | する点をCとし, AB         |
|      | よ。           | めよ。               | めよ。                             | =2 のときCTの長さ         |
| 問題   | B C D        | A D B             | $\bigcap_{P \in A} \bigcap_{B}$ | を求めよ。<br>A<br>C T   |
| 主な誤答 | 4 (8%)       | 12 (9%)           | $\frac{4}{3}$ (10%)             | $\sqrt{15}$ (18.2%) |
| 正答率  | 31%          | 66%               | 40%                             | 23.6%               |
| 無答率  | 36%          | 6 %               | 15%                             | 18.7%               |

方べきの定理に関する問題は近年連続して出題されている。H18, H19 は考えやすい図形であること, 円周角の定理を用いて相似な三角形を容易に見つけられることから正答率が高い。H17 は高校の学習内容(接弦定理)を用いないと相似な三角形を容易に見つけられないため, 方べきの定理を知らないと難しく, 正答率は低かった。無答率も高かった。

今回は「 $PT^2 = PA \cdot PB$ 」の形であるがABが直径であるため,三平方の定理を用いても解くことができる問題であった。しかし正答率はH17よりも8%も低かった。これは外分の処理ができなかったためと思われる。誤答の $CT = \sqrt{15}$ は「AB:AC=2:3」として考えた生徒で,全体の18.2%もいた。

### 【指導上の留意点】

**分点の考え方を理解させるために、次のような指導をしてみてはどうだろうか。** 

①「ABを2:1に外分する」ために、ベクトルの始点・終点の考えを取り入れ「Aから出発してBにたどり着く」と考えさせる。そこからさらに「ABを2:1に外分(内分)」と「BAを2:1に外分(内分)」の比較をし、始点・終点の違いを理解させていく。

②始点・終点の違いを理解した上で「ABを 2:1 に外分する」には、Aから右に進むのか、左に進むのかという感覚を身につけさせたい。「ABを 2:1 に外分する」にはAから左に 2 進むと、1 ではB に戻れないと指導すると生徒は理解しやすいのではないだろうか。

以上のことをふまえて分点を図示する演習を行い,比に十分慣れさせることが必要であると考える。

# (4) 「異なるものの順列」と「同じものを含む順列」の違いが理解できていない。

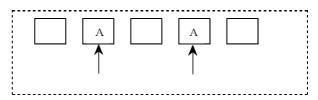
| 年度  | 問題           | 主な誤答           | 正答率(上位群/下位群)    | 無答率 (上位群/下位群)     |
|-----|--------------|----------------|-----------------|-------------------|
| H18 | AICHIを一列に並べる | 5!=120 (22%)   | 40% (74% / 7%)  | 7% (2%/11%)       |
| H19 | AABCDを一列に並べる | 5!=120 (23%)   | 38% (69%/4%)    | 8% (1%/11%)       |
| H20 | AABBBを一列に並べる | 5!=120 (27.2%) | 44.2% (74%/14%) | 6.9% (2.4%/14.1%) |

同じものを含む順列の計算は近年連続して出題されており、正答率は例年 40%前後である。H18では、「AICHI」と「I」が離れて表記されたことにより、認識されにくく正答率が低かったという分析があった。そのため、H19は「AABCD」と同じものがわかるような問題を出題したが、正答率および無答率には大きな差はなかった。さらに今回は「AABBB」と、昨年よりも一目で「同じものを含む順列」とわかる問題を出題した。下位群の正答率が 10%も増加したことから、隣同士に同じものを並べて表記されると認識はされやすいことがわかった。しかし、5!=120 とする誤答は例年と変わらず 20%を超える結果であった。このことから、「異なるものの順列」と「同じものを含む順列」の違い自体を理解できない生徒が常に 20%程度いることが伺える。

### 【指導上の留意点】

以下に数学的活動を取り入れた授業展開を考えてみた。

①「AABBBを一列に並べると、ほんとに5!=120通りなのだろうか?」


実際に「AABBB」を書き並べると 10 通りになる。なぜこのような違いができるのだろう。もしも, 2 つのAが $A_1A_2$ であれば並べ方は 2!=2 通り。 同様に 3 つのBが $B_1B_2B_3$ であれば並べ方は 3!=6 通りである。AABBBの並べ方 10 通りを用い

AABBB BAABB BBAAB BBBAA ABABB BABAB BBABA ABBAB BABBA ABBBA 以上より 10通り

て、 $A_1 A_2 B_1 B_2 B_3$ の並べ方 5! = 120 通りは次のように計算できる。

10 通り×2!×3!=120 通り よって 10 通り=
$$\frac{120}{2.1\times2.1}$$
 と計

②「AABBB」を一列に並べるには、それぞれの文字を入れる場所を考える。5カ所からAを入れる場所 2カ所選ぶ選び方は $_5C_2$ 通り。残りの3カ所からBを入れる場所3カ所選ぶ選び方は $_3C_3$ 通り。よって、



$$_{5}C_{2} \times _{3}C_{3} = \frac{5 \times 4}{2 \times 1} = 10 通 9$$

と計算できるのである。

「異なるものの順列」と「同じものを含む順列」の違いを明確に理解させるためには、解説で終わるのではなく、実際に数を数えさせるなど生徒に体験させ、印象を与えることが必要である。この違いの理解は、今後の「グループ分け」の考え方や確率の「反復試行」の考え方に役立つので、ぜひ定着させたい。

| 6 数学Ⅱの結果とその考察                                                                                     |                                                                                                                                              |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 次の  の中にあてはまる数または式を解答欄                                                                             | に記入せよ。                                                                                                                                       |
| [1] 次の各問いに答えよ。                                                                                    | [2] 円 $x^2 + y^2 - 8x + 12 = 0$ …① 上を動                                                                                                       |
| (1) $\frac{1}{1+i} + \frac{1}{1-i}$ を計算すると であ                                                     | く点Q( $s,\;t$ )と原点Oを結ぶ線分OQの中                                                                                                                  |
| 1+ <i>i</i> 1- <i>i</i><br>る。ただし, <i>i</i> は虚数単位とする。                                              | 点をPとする。このとき、次の各問いに答え                                                                                                                         |
| ,,,                                                                                               | よ。                                                                                                                                           |
| (2) 3次方程式 $2x^3 + 5x^2 + x - 2 = 0$ の解は $x = $ である。                                               | (1) 円①の中心の座標は である。                                                                                                                           |
| (3) 2次方程式 3x²-2x+1=0 の2つの解を<br>α, βとするとき,                                                         | (2) 点 $P$ の座標 $(x, y)$ を $s, t$ で表すと, $x = \begin{bmatrix} \mathcal{T} \end{bmatrix}$ , $y = \begin{bmatrix} \mathcal{T} \end{bmatrix}$ である。 |
| $\alpha+\beta=$ $\boxed{\mathcal{F}}$ , $\alpha$ $\beta=$ $\boxed{\mathcal{A}}$ である。              | (3) 点Pの軌跡の方程式は である。                                                                                                                          |
| (4) 点 $(-1,2)$ と直線 $4x+3y-5=0$ との距離                                                               |                                                                                                                                              |
| は である。                                                                                            | [3] 関数 $y = \log_2 x + \log_2 (8 - x)$ について、                                                                                                 |
| ء ال                                                                                              | 次の各問いに答えよ。                                                                                                                                   |
| (5) $\sin \theta = \frac{2}{3}$ , $\cos \theta = \frac{\sqrt{5}}{3}$ のとき, $\cos 2\theta$ の値は である。 | (1) この関数の定義域は である。                                                                                                                           |
| (6) $0 \le \theta < 2\pi$ のとき, $\tan \theta + \sqrt{3} = 0$ を満た す $\theta$ の値は である。               | (2) yの最大値は である。                                                                                                                              |
| $(7) r > 0, -\pi \le \alpha < \pi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                            |                                                                                                                                              |
| $\sqrt{3}\sin\theta - \cos\theta$ を $r\sin(\theta + \alpha)$ の形に                                  | [4] 関数 $y = 2x^3 + 3x^2 - 12x$ $(-3 \le x \le 3)$                                                                                            |
| 変形すると, $r=$ $$ $$ $\rceil$ $\rceil$ $\alpha=$ $$ $\rceil$ $\rceil$                                | について、次の各問いに答えよ。                                                                                                                              |
| ある。                                                                                               | (1) この関数の極大値は である。                                                                                                                           |
| (8) $\log_4 8$ の値は である。                                                                           |                                                                                                                                              |
| (9) 不等式 $3^{x+1} \le 9^x$ を満たす $x$ の値の範囲は である。                                                    | (2) -3≦ <i>x</i> ≦3 のとき, <i>y</i> の値の範囲は である。                                                                                                |
| (10) 曲線 $y=x^3-2$ 上の点 $(-1, -3)$ におけ                                                              | (3) $x$ についての方程式 $2x^3 + 3x^2 - 12x = a$                                                                                                     |
| る接線の傾きは である。                                                                                      | が、 $-3 \le x \le 3$ の範囲に異なる $3$ つの実数解をもつような実数 $a$ の値の範囲は で                                                                                   |
| (11) 関数 $F(x)$ は $F'(x) = -6x^2 + 5$ , $F(0) = 6$ を満たしている。このとき, $F(x) = $                         | ある。                                                                                                                                          |
| を摘たしている。このとき、 $F(x) = $ である。                                                                      |                                                                                                                                              |
| (12) 放物線 $y = -x^2 + 5$ と直線 $y = 1$ で囲ま                                                           |                                                                                                                                              |
| れた部分の面積はである。                                                                                      |                                                                                                                                              |

| 番号   | 配点 | 正答                                                        | 正答 |          | 無答 | 位群<br>率<br>位群 | 誤答率 | 主な誤答例(標本全体に対する%)                                                                                                                         |
|------|----|-----------------------------------------------------------|----|----------|----|---------------|-----|------------------------------------------------------------------------------------------------------------------------------------------|
| [1]  | 5  | 1                                                         | 79 | 93<br>62 | 2  | 0 2           |     | $\frac{1}{2}$ (5.0), $\frac{2}{1-i^2}$ (2.8), 2 (2.4)                                                                                    |
| (2)  | 5  | $-2, -1, \frac{1}{2}$                                     | 58 | 87<br>19 | 16 | 0<br>40       | 26  | $-1 (5.5), -2 (2.4), -2, \frac{1}{2}, 1 (2.4)$                                                                                           |
| (3)  | 5  | $\alpha + \beta = \frac{2}{3}, \alpha\beta = \frac{1}{3}$ | 64 | 91<br>31 | 6  | 1<br>5        | 30  | $\alpha + \beta : -\frac{2}{3}$ (5.4), $\frac{3}{2}$ (2.2), $-\frac{1}{3}$ (1.8)<br>$\alpha\beta : -\frac{1}{3}$ (6.6), 3 (3.6), 1 (3.0) |
| (4)  | 5  | $\frac{3}{5}$                                             | 38 | 71<br>8  | 26 | 2<br>46       | 36  | $\frac{3\sqrt{5}}{5}$ (6.9), 3 (4.3), -3 (2.4), 1 (2.2)                                                                                  |
| (5)  | 5  | $\frac{1}{9}$                                             | 45 | 82<br>8  | 24 | 3<br>43       | 31  | $\frac{4\sqrt{5}}{9} (4.6), -\frac{1}{9} (4.0), \frac{2\sqrt{5}}{3} (3.8), \frac{5}{9} (2.4)$                                            |
| (6)  | 5  | $\frac{2\pi}{3}, \frac{5\pi}{3}$                          | 42 | 74<br>7  | 19 | 0<br>39       | 39  | $\frac{2}{3}\pi$ (3.3), 120°, 330° (3.3), 120° (3.1)                                                                                     |
| (7)  | 5  | $r=2, \alpha=-\frac{\pi}{6}$                              | 28 | 56<br>4  | 28 | 2<br>49       | 44  | $r: \sqrt{3}$ (8.4), 2 (5.3), 4 (1.0)<br>$\alpha: \frac{\pi}{6}$ (7.4), $\frac{2}{3}\pi$ (3.7), $\frac{11}{6}\pi$ (3.5)                  |
| (8)  | 5  | $\frac{3}{2}$                                             | 64 | 94<br>28 | 9  | 0<br>14       | 27  | $2 (8.5), \frac{1}{2} (3.2), 3 (2.8), 3 \log_4 2 (1.4)$                                                                                  |
| (9)  | 5  | $1 \leq x$                                                | 67 | 89<br>48 | 8  | 0<br>12       | 25  | $\frac{1}{2} \le x  (5.3),  x \le 1  (4.8)$                                                                                              |
| (10) | 5  | 3                                                         | 47 | 67<br>13 | 24 | 2<br>49       | 29  | 1 (3.5), $y = 3x$ (3.2), 2 (2.1), $3x^2$ (2.0)                                                                                           |
| (11) | 5  | $-2x^3 + 5x + 6$                                          | 77 | 97<br>55 | 11 | 0<br>17       | 12  | $-2x^2 + 5x$ (2.4)                                                                                                                       |
| (12) | 5  | $\frac{32}{3}$                                            | 39 | 67<br>9  | 22 | 4<br>48       | 39  | $\frac{44}{3}$ (7.1), 8 (3.2), 16 (3.1), 2 (2.9)                                                                                         |
| [2]  | 5  | (4, 0)                                                    | 69 | 96<br>31 | 11 | 0<br>27       | 20  | (4,-6) (5.8), (4,1) (2.1), (0,0) (1.8)                                                                                                   |
| (2)  | 5  | $x = \frac{s}{2}, y = \frac{t}{2}$                        | 53 | 84<br>15 | 29 | 2<br>60       | 18  | $\left(\frac{s+4}{2},\frac{t}{2}\right) (4.1),$                                                                                          |
| (3)  |    | $(x-2)^2 + y^2 = 1$                                       | 25 | 46<br>1  | 54 | 19<br>82      | 21  | $(x-4)^2 + y^2 = 1 (2.2), (x-4)^2 + y^2 = 2 (1.4)$                                                                                       |
| [3]  | 5  | 0 < <i>x</i> < 8                                          | 43 | 79<br>10 | 27 | 4<br>51       | 30  | $0 \le x \le 8$ (7.8), $x < 8$ (3.2), 3 (2.4)                                                                                            |
| (2)  | 5  | 4                                                         | 33 | 46<br>6  | 34 | 12<br>64      | 33  | 3 (11.6), 16 (8.9), 8 (2.7), 2 (1.4)                                                                                                     |
| [4]  | 5  | 20                                                        | 53 | 80<br>21 | 7  | 0<br>14       | 40  | 45 (25.0), 60 (1.1), 28 (0.9)                                                                                                            |
| (2)  | 5  | $-7 \le y \le 45$                                         | 52 | 76<br>23 | 9  | 0<br>20       | 39  | $9 \le y \le 45$ (11.1), $-7 \le y \le 20$ (3.4)                                                                                         |
| (3)  |    | $9 \le a < 20$                                            | 15 | 23<br>4  | 34 | 5<br>62       | 51  | $-7 < a < 20 $ (17.3), $9 \le a \le 20 $ (5.3), $9 < a < 20 $ (4.7), $-7 \le a \le 20 $ (2.8)                                            |

### (1) 加法定理から公式を導き出せるよう指導したい。

| 年度   | 問題                                                                                 | 正答率(%)(上位群/下位群)              | 無答率(%)(上位群/下位群) |
|------|------------------------------------------------------------------------------------|------------------------------|-----------------|
| H17  | $\sin\theta = \frac{1}{3}$ のとき、 $\cos 2\theta$ の値                                  | 34 (72/4)                    | 24 (2/44)       |
| H18  |                                                                                    | 38 (69/6)                    | 23 (2/40)       |
| H19  | $\cos\theta = \frac{1}{3}$ のとき, $\cos 2\theta$ の値                                  | 35 (66/1)                    | 20 (4/31)       |
| H20  | $\sin\theta = \frac{2}{3}, \cos\theta = \frac{\sqrt{5}}{3}$ のとき, $\cos 2\theta$ の値 | 45 (82/8)                    | 24 (3/43)       |
| 1120 | 主な誤答 $\frac{4\sqrt{5}}{9}$ (4.6%) $\frac{1}{9}$ (4.0%)                             | $\frac{2\sqrt{5}}{3}$ (3.8%) |                 |

例年は $\cos\theta$ または $\sin\theta$  どちらか一方のみ与えて $\cos2\theta$  を求めさせていたが,今回は両方の値を与えて出題した。そのためか,例年より高い正答率であり,特に上位群の上昇率が目立つ。このことから, $\cos2\theta=\cos^2\theta-\sin^2\theta$  は知っているが  $\sin^2\theta+\cos^2\theta=1$  を活用することができないといえる。また,依然として無答率は全体の1/4もおり,上位群と下位群の正答率の差が一番大きい問題であった。主な誤答としては, $\cos2\theta=2\sin\theta\cos\theta=\frac{4\sqrt{5}}{9}$ , $\cos2\theta=\sin^2\theta-\cos^2\theta=\frac{1}{9}$ , $\cos2\theta=2\cos\theta=\frac{2\sqrt{5}}{3}$  として計算したと思われる解答であった。

### 【指導上の留意点】

三角関数に対しての理解が不十分なうえ、加法定理、2倍角の公式、半角の公式、合成、和から積に直す公式など次から次へと公式が出てくるため、混同して覚えられず、消化しきれていない生徒が多いと思われる。まずは三角関数の基本的な性質や加法定理をしっかり定着させ、そして、2倍角の公式や半角の公式などは単なる暗記としてではなく、加法定理から導き出せるよう丁寧に指導する必要がる。

$$\cos 2\theta = \cos(\theta + \theta) = \cos\theta \cdot \cos\theta - \sin\theta \cdot \sin\theta = \cos^2\theta - \sin^2\theta$$
 を導き出す。さらに、 $\sin^2\theta + \cos^2\theta = 1$ を活用し、 $\cos^2\theta - \sin^2\theta = \left(1 - \sin^2\theta\right) - \sin^2\theta = 1 - 2\sin^2\theta$  を求める。

公式が曖昧な生徒がいたら、その都度、公式を導き出す過程を確認したい。

### (2) 放物線と直線 y=b とで囲まれる部分の面積を求める問題で正答率が下がる。

| 年度  | 問題                             | 正答率(%)(上位群/下位群) | 無答率(%)(上位群/下位群) |
|-----|--------------------------------|-----------------|-----------------|
| H14 | 放物線 $y = x^2 - 1 \ge x$ 軸      | 49 (78/21)      | 23 (0/43)       |
| H15 | 放物線 $y = -x^2 + 3x と x$ 軸      | 56 (87/28)      | 22 (1/44)       |
| H16 | 放物線 $y = x^2 - 4$ と $x$ 軸      | 49 (81/17)      | 21 (1/42)       |
| H18 | 放物線 $y = -x^2 + 4$ と $x$ 軸     | 52 (71/25)      | 20 (3/39)       |
| H17 | +64669年                        | 38 (62/13)      | 21 (7/29)       |
| H19 | 放物線 $y=x^2-3$ と直線 $y=1$        | 36 (67/ 8)      | 23 (2/43)       |
| H20 | 放物線 $y = -x^2 + 5$ と直線 $y = 1$ | 39 (67/ 9)      | 22 (4/48)       |

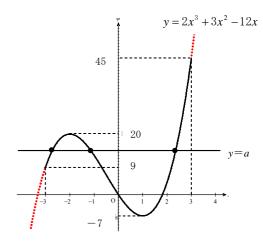
直線 y=ax+b に比べ、軸に平行な直線 x=a、y=b のグラフをかけない生徒も少なくない。そのため、放物線と直線で囲まれる部分の面積を求める問題では、直線がx軸のときに比べ、x 軸以外の直線にすると正答率が 10%ほど下がる傾向がある。誤答で最も多かった $\frac{44}{3}$  (7.1%) は、交点のx 座標 2、-2 は求めることができたが、面積を  $\int_{-2}^{2} (-x^2+5)dx$  として計算してしまったためと考えられる。

### 【指導上の留意点】

積分計算の前に、直線 y=b など y=ax+b ( $a\neq 0$ ) 以外のグラフも正確にかくことを定着させたい。また、定積分を用いて面積を求める問題では、グラフを必ず図示し、面積を求める図形の上側と下側の境界をしっかり確認させ、被積分関数は(上側の境界) - (下側の境界)であることを強調し、立式の段階でミスをしないよう指導したい。

### (3) 指定された区間における関数の極値、値域の問題は苦手な生徒が多い。

| 年度  | 問題                                                       | 正答率(%)(上位群/下位群) | 無答率(%)(上位群/下位群) |
|-----|----------------------------------------------------------|-----------------|-----------------|
| H19 | 関数 $y = 2x^3 + 3x^2 - 12x$ の極大値                          | 75 (96/53)      | 10 (0/17)       |
|     | (1) 関数 $y = 2x^3 + 3x^2 - 12x$ ( $-3 \le x \le 3$ ) の極大値 | 53 (80/21)      | 7 (0/14)        |
| H20 | (2) −3≦x≦3のとき, yの値の範囲                                    | 52 (76/23)      | 9 (0/20)        |
|     | 主な誤答(1) 45 (25%) (2) 9≦y≦45                              | (11%)           |                 |


上位群・下位群の生徒ともに指定された区間における極値や値域を求める問題は正答率が下がる。 (1) の誤答では,グラフの端点 x=3 のときの y の値 45 を解答した生徒が 25%を占めた。極値を最大値と勘違いして解答したか,あるいは単純に x の値が最大のとき y の値も最大であるとして解答したと考えられる。 (2) についても端点の y の値を答えた誤答が多い。

| 年度   | 問題                                                                                                        |                           | 正答率(%)(上位群/下位群) | 無答率 (%) (上位群/下位群) |  |
|------|-----------------------------------------------------------------------------------------------------------|---------------------------|-----------------|-------------------|--|
| H17  | 方程式 $-2x^3-3x^2+12x=a$                                                                                    | が異なる3つの実                  | 47 (69/13)      | 29 (4/56)         |  |
| H19  | 方程式 $2x^3 + 3x^2 - 12x = a$                                                                               | 数解を持つ                     | 44 (77/ 6)      | 33 (4/66)         |  |
| H15  | 方程式 $2x^3 + 3x^2 - 12x - 5 = a$                                                                           | が異なる2つの正                  | 27 (59/1)       | 39 (8/73)         |  |
| H16  | 方程式 $x^3 - 3x^2 - 9x - 2 = a$                                                                             | の解と1つの負の                  | 25 (52/3)       | 37 (8/68)         |  |
| H18  | 方程式 $2x^3 + 3x^2 - 12x = a$                                                                               | 解を持つ                      | 27 (54/2)       | 40 (5/70)         |  |
| H14  | 方程式 $2x^3 + 3x^2 - 12x + 5 = a$                                                                           | が-3≤x≤3 の範<br>囲に思わる 2 0 の | 13 (23/ 0)      | 40 (3/71)         |  |
| H20  | (3) 方程式 $2x^3 + 3x^2 - 12x = a$                                                                           | · 囲に異なる3つの<br>実数解を持つ      | 15 (23/4)       | 34 (5/62)         |  |
| 1120 | 正答 $9 \le a < 20$ 主な誤答 $-7 < a < 20$ (17%) $9 \le a \le 20$ (5%) $9 < a < 20$ (5%) $-7 \le a \le 20$ (3%) |                           |                 |                   |  |

方程式への応用の問題では、実数解の種類に条件がつく場合や、区間が指定してある場合、上位群でも正答率が大幅に下がり、下位群では無答率が目立つ。(2)の値域を求める問題では半数の生徒が正答しているが、(3)の正答率は 15%と激減している。このことからグラフを利用して問題を解くことを苦手とする生徒や、次の問題を解く手掛かりとして前問を生かすことができない生徒が多いことが分かる。また、不等号に「=」をつけるかどうかが生徒にとっては理解しにくいようである。

### 【指導上の留意点】

複数の関数や方程式を同時に扱う問題や、区間が指定してある関数や方程式の問題など、複雑な条件がからむ問題を解く場合、計算や増減表だけで済ませるのではなく、区間などもグラフに記入し、視覚的に捉えることで解法の糸口に繋げることが重要である。そのためにも1年生で学習する2次関数から定義域内でグラフをかかせることを徹底したい。

